On-line Transient Stability Assessment through Generator Rotor Angles Prediction Using Radial Basis Function Neural Network

نویسندگان

  • Shahbaz A. Siddiqui
  • Kusum Verma
  • Manoj Fozdar
چکیده

On-line Transient Stability Assessment (TSA) is challenging task due to the large number of variables involved and continuously varying operating conditions. This study proposes an on-line transient stability assessment methodology based on the predicted values of generator rotor angles under varying operating conditions for predefined contingency set through Radial Basis Function Neural Network (RBFNN). The real and reactive power loads are taken as input features for training of the neural network. Principal Component Analysis (PCA) is used for dimensionality reduction of the input data set to select informative features. The proposed method is tested on IEEE-39 bus test system and the results obtained for transient stability assessment through predicted rotor angles are promising.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm

Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...

متن کامل

Fast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network

Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...

متن کامل

Using Artificial Neural Networks to Estimate Rotor Angles and Speeds from Phasor Measurements

This paper deals with an improved use of phasor measurements. In particular, the paper focuses on the development of a technique for estimation of generator rotor angle and speed, based on phasor measurement units, for transient stability assessment and control in real-time. Two multilayered feed-forward artificial neural networks are used for this purpose. One for the estimation of rotor angle...

متن کامل

Transient Stability Analysis Using MATLAB Simulink and Neural Network

In this paper a Neural Networks (NN) is proposed for transient stability prediction. Transient stability of a power system is first determined based on the generator relative rotor angles procured from time domain simulation outputs. Simulations were carried out on a single machine infinite bus system by considering three phase short circuit fault on the system. The data collected from the time...

متن کامل

Prediction of Dispersed Phase Holdup in the Kühni Extraction Column Using a New Experimental Correlation and Artificial Neural Network

In this work, the dispersed phase holdup in a Kühni extraction column is predicted using intelligent methods and a new empirical correlation. Intelligent techniques, including multilayer perceptron and radial basis functions network are used in the prediction of the dispersed phase holdup. To design the network structure and train and test the networks, 174 sets of experimental data are used. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015